Wingless-type family member 3A triggers neuronal polarization via cross-activation of the insulin-like growth factor-1 receptor pathway
نویسندگان
چکیده
Initial axonal elongation is essential for neuronal polarization and requires polarized activation of IGF-1 receptors (IGF-1r) and the phosphatidylinositol 3 kinase (PI3k) pathway. Wingless-type family growth factors (Wnts) have also been implied in the regulation of axonal development. It is not known, however, if Wnts have any participation in the regulation of initial axonal outgrowth and the establishment of neuronal polarity. We used cultured hippocampal neurons and growth cone particles (GCPs) isolated from fetal rat brain to show that stimulation with the wingless family factor 3A (Wnt3a) was sufficient to promote neuronal polarization in the absence of IGF-1 or high insulin. We also show that Wnt3a triggered a strong activation of IGF-1r, PI3k, and Akt in developmental Stage 2 neurons and that the presence of activatable IGF-1r and PI3k activation were necessary for Wnt3a polarizing effects. Surface plasmon resonance (SPR) experiments show that Wnt3a did not bind specifically to the IGF-1r. Using crosslinking and immuno-precipitation experiments, we show that stimulation with Wnt3a triggered the formation of a complex including IGF-1r-Wnt3a-Frizzled-7. We conclude that Wnt3a triggers polarization of neurons via cross-activation of the IGF-1r/PI3k pathway upon binding to Fz7.
منابع مشابه
ANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کاملType I insulin-like growth factor receptor activation regulates apoptotic proteins.
Activation of the type I insulin-like growth factor receptor (IGF-IR) blocks osmotic mediated programmed cell death (PCD) in neurons. We speculated that IGF-IR activation could afford neuroprotection either by effecting the negative regulators of the death pathway, Bcl-2 and Bcl-xL, or by altering activity of the ced-3/ICE-like proteases. Here we report that osmotic stress decreases total neuro...
متن کاملType I insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy.
Skeletal muscle is able not only to increase its mass as an adaptation to mechanical loading generated by and imposed upon muscle but also to regenerate after damage, via its intrinsic regulation of gene transcription. Both cellular processes, muscle regeneration and hypertrophy, are mediated by the activation, proliferation and differentiation of muscle satellite cells and appear to be modulat...
متن کاملSuppressor of Cytokine Signalling-6 Promotes Neurite Outgrowth via JAK2/STAT5-Mediated Signalling Pathway, Involving Negative Feedback Inhibition
BACKGROUND Suppressors of cytokine signalling (SOCS) protein family are key regulators of cellular responses to cytokines and play an important role in the nervous system. The SOCS6 protein, a less extensively studied SOCS family member, has been shown to induce insulin resistance in the retina and promote survival of the retinal neurons. But no reports are available about the role of SOCS6 in ...
متن کاملIn silico prediction of B cell epitopes of the extracellular domain of insulin-like growth factor-1 receptor
The insulin-like growth factor-1 receptor (IGF-1R) is a transmembrane receptor with tyrosine kinase activity. The receptor plays a critical role in cancer. Using monoclonal antibodies (MAbs) against the IGF-1R, typically blocks ligand binding and enhances down-regulation of the cell-surface IGF-1R. Some MAbs such as cixutumumab are under clinical trial investigation. Targeting multiple distinct...
متن کامل